Computing minimal finite free resolutions
نویسندگان
چکیده
منابع مشابه
Strategies for Computing Minimal Free Resolutions
One of the most important computations in algebraic geometry or commutative algebra that a computer algebra system should provide is the computation of finite free resolutions of ideals and modules. Resolutions are used as an aid to understand the subtle nature of modules and are also a basis of further computations, such as computing sheaf cohomology, local cohomology, Ext, Tor, etc. Modern me...
متن کاملMINIMAL FREE RESOLUTIONS over COMPLETE INTERSECTIONS
We begin the chapter with some history of the results that form the background of this book. We then define higher matrix factorizations, our main focus. While classical matrix factorizations were factorizations of a single element, higher matrix factorizations deal directly with sequences of elements. In section 1.3, we outline our main results. Throughout the book, we use the notation introdu...
متن کاملLinear Free Resolutions and Minimal Multiplicity
Let S = k[x, ,..., x,] be a polynomial ring over a field and let A4 = @,*-a, M, be a finitely generated graded module; in the most interesting case A4 is an ideal of S. For a given natural number p, there is a great interest in the question: Can M be generated by (homogeneous) elements of degree <p? No simple answer, say in terms of the local cohomology of M, is known; but somewhat surprisingly...
متن کاملComputing Resolutions Over Finite p-Groups
A uniform and constructive approach for the computation of resolutions and for (co)homology computations for any finite p-group is detailed. The resolutions we construct ([32]) are, as vector spaces, as small as the minimal resolution of IFp over the elementary abelian p-group of the same order as the group under study. Our implementations are based on the development of sophisticated algebraic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1997
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(97)00007-8